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Abstract. In this paper, we study optimality conditions for vector optimization problems of
a difference of convex mappings

(V P )






R
p
+− −Minimizef (x)−g(x),

subject to the constraints

x ∈C, l(x)∈−Q,Ax=b
and h(x)−k(x)∈−R

m
+,

where f := (f1, . . . , fp), g := (g1, . . . , gp)h := (h1, . . . , hm), k := (k1, . . . , km),Q is a closed con-
vex cone in a Banach space Z, l is a mapping Q-convex from a Banach space X into Z,A

is a continuous linear operator from X into a Banach space W,Rp
+ and R

m
+ are respectively

the nonnegative orthants of R
p and R

m, C is a nonempty closed convex subset of X, b∈W ,
and the functions fi, gi, hj and kj are convex for i=1, . . . , p and j =1, ldots,m. Necessary
optimality conditions for (V P ) are established in terms of Lagrange-Fritz-John multipliers.
When the set of constraints for (V P ) is convex and under the generalized Slater constraint
qualification introduced in Jeyakumar and Wolkowicz [11] , we derive necessary optimality
conditions in terms of Lagrange-Karush-Kuhn-Tucker multipliers which are also sufficient
whenever the functions gi, i=1, . . . , p are polyhedrals. Our approach consists in using a spe-
cial scalarization function. A necessary optimality condition for convex vector maximization
problem is derived. Also an application to vector fractional mathematical programming is
given. Our contribution extends the results obtained in scalar optimization by Hiriart-Urruty
[9] and improve substantially the few results known in vector case (see for instance: [11], [12]
and [14]).
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1. Introduction

Vector optimization has drawn much attention for a long time, and many results
have been obtained. For instance, Censor [3] gives optimality conditions for
differentiable convex vector optimization by using the theorem of Dubovitskii-
Milyutin.Yu [21] generalized Pareto-optimal solutions to nondominated cone
solutions in the objective space of multiobjective programming problems.
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Charnes et al. [5] studied the properties of nondominated solutions in decision
spaces which are normed vector space, these authors further developed new
approaches [6] and applied them to extensions of game theory. Li [13] devel-
oped new necessary as well as sufficient conditions for nondominated solu-
tions to cone-quasiconvex multiobjective programming problems by assuming
the quasiconvexity of the weighted sum of subgroups of objectives. Taa [20]
studied optimality conditions in terms of Lagrange–Fritz–John and Lagrange–
Karush–Kuhn–Tucker multipliers for nonsmooth and nonconvex vector math-
ematical programming with the existence of the Hadamarad directional
derivatives of objective and constraint functions.

In this paper, we investigate optimality conditions in terms of Lag-
range–Fritz–John and Lagrange–Karush–Kuhn–Tucker multipliers for vec-
tor optimization problems when, objective and constraints are defined by
difference of convex mappings. Our approach consists in using a special
scalarization function introduced in optimization by Hiriart–Urruty [8].
Our contribution extends the results obtained in scalar case by Hiriart-
Urruty [9] and improve substantially the few results known in convex vec-
tor case, see for instance Minami [14], Kanniappan [12], and Jeyakumar
and Wolkowicz [11].

Our paper is organized in this way. In Section 2, we will recall the results
by Attouch and Brezis [2], and Swartz [19], and we will establish some
preliminary results. Section 3 is devoted to necessary optimality conditions
in terms of Lagrange–Fritz–John multipliers for (VP) (see Theorem 3.1).
When the set of constraints is convex and under the generalized Slater con-
straint qualification introduced by Jeyakumar et al. [11], we establish the
Lagrange–Karush–Kuhn–Tucker necessary optimality conditions for (VP)
(see Corollary 3.2) which are also sufficient whenever the functions gi, i=
1, . . . , p are polyhedrals (see Corollary 3.3). A necessary optimality condi-
tion for convex vector maximization problems is derived. In section 4, we
give an application to vector fractional mathematical programming.

2. Preliminary

Throughout this paper X,Z and W are Banach spaces whose topological
dual spaces are X∗,Z∗ and W ∗ respectively. Let K⊂R

p be a pointed (K ∩−
K={0}) closed convex cone with its interior IntK �=∅. Let A be a nonemp-
ty subset of R

p. The weak K-minimal set and the weak K-maximal set of
A are defined by

W ·MinKA={y ∈A :A⊂y+R
p \−IntK

}

and

W ·MaxKA={y ∈A :A⊂y+R
p \ IntK

}
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respectively. The polar cone Ko of K is defined as

Ko={y∗ ∈R
p : 〈y∗, y〉�0 for all y ∈K} ,

where 〈., .〉 is the dual pairs.
Given a mapping ϕ :X→R

p, the epigraph of ϕ is defined by

epi(ϕ)={(x, y)∈X×Y :y ∈ϕ(x)+K} .
Since convexity plays an important role in the following investigations,
recall the concept of cone–convex mappings.

The mapping ϕ is said to be K-convex if for every α∈ [0,1] and x1, x2 ∈X,
αϕ(x1)+ (1−α)ϕ(x2)∈ϕ(αx1 + (1−α)x2)+K.

The problem considered in this paper can be formulated as follows

(V P )






R
p
+− Minimize f (x)−g(x),

subject to the constraints
x ∈C, l(x)∈−Q,Ax=b
and h(x)−k(x)∈−R

m
+,

where f := (f1, . . . , fp), g := (g1, . . . , gp) : X → R
p, h := (h1, . . . , hm), k :=

(k1, . . . , km) :X→ R
m,A :X→W is a continuous linear operator, Q is a

closed convex cone in Z with IntQ �= ∅, l is a mapping Q-convex from X

into Z, R
p
+ and R

m
+ are respectively the nonnegative orthants of R

p and
R
m, C is a nonempty closed convex subset of X, and the functions fi, gi, hj

and kj are convex for i=1, . . . , p and j =1, . . . ,m. We let

D={x ∈X :h(x)−k(x)∈−R
m
+ and l(x)∈−Q} (1)

and

E={x ∈X :Ax=b} . (2)

We let

F =C∩D∩E (3)

denote the feasible set of (VP). Consider the set

(f −g)(F ) :={f (x)−g(x) :x ∈F } .
x is a local weak minimal solution of (VP) with respect to R

p
+ if x ∈F and if

there exists a neighborhood V of x such that f (x)−g(x)∈W ·MinR
p
+((f −g)

(F ∩V )).
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Consider the following maximization problem with respect to R
p
+ :

(VP′)






R
p
+− MaximizeG(x, y),

subject to the constraints
x ∈F andM(x, y)∈−R

p
+,

where G(x, y)=g(x)−y and M(x, y)=f (x)−y for all (x, y)∈X×R
p.

Clearly both G and M are R
p
+-convex on X×R

p. Put

F ′ :={(x, y)∈X×R
p :x ∈F andM(x, y)∈−R

p
+
}
.

(x, y) is a local weak maximal solution of (VP′) with respect to R
p
+ if

(x, y)∈F ′ and if there exists a neighborhood U of (x, y) such that

G(x, y)∈W ·MaxR
p
+G(F

′ ∩U).
As in scalar case (see Hiriart-Urruty [9]), one easily check that if x is a
local weak minimal solution of (VP) with respect to R

p
+, then (x, f (x)) is a

local weak maximal solution of (VP′) with respect to R
p
+ and, conversely, if

(x, y) is a local weak maximal solution of (VP′) with respect to R
p
+, then

y = f (x) and x is a local weak minimal solution of (VP) with respect to
R
p
+. Hence, a vector minimization of a difference of convex mappings in

X can be viewed as a convex maximization problem in X×R
p.

The next concept is introduced in Dauer and Saleh [7].

DEFINITION 2.1 [7]. Let Y be a Banach space and A be a nonempty
subset of Y . A functional ψ :A→ R is called Y+−increasing (respectively
decreasing) on A, if for each y0 ∈A

y ∈ (y0 +Y+)∩Y impliesψ(y)� (respectively�)ψ(y0),

where Y+ is a nonempty closed convex cone of Y .
For a subset S of a Banach space Y , we consider the function

�S(y)=
{
d(y, S) ify ∈ (Y \S)
−d(y,Rp \S) ify ∈S

where d(y, S)= inf {‖u−y‖ :u∈S}. This function is introduced in Hiriart–
Urruty [8] (see also [10]), and used by Ciligot -Travain [4], and Amahroq
and Taa [1].

Let us recall the following result of [19].

PROPOSITION 2.1 [19]. Let Y be a Banach space and S ⊂ Y be a closed
convex cone with nonempty interior and S �= Y . The function �S is convex,
positively homogeneous, 1-Lipschitzian, increasing on Y with respect to
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the order introduced by S. Moreover (Y \S) = {y ∈Y :�S(y)>0}, IntS =
{y ∈Y :�S(y)<0} and the boundary of S :bd(S)={y ∈Y :�S(y)=0}.

It is easy to verify the following lemma.

LEMMA 2.1. The function � : Rp×Z×R
m→R defined by

�(y, z,w)=max(�−IntRp
+(y),�−Q(z),�−IntR

m+
(w))

is (R
p
+ ×Q×R

m
+)-increasing on R

p×Z×R
m.

Given a convex function ψ :X→R∪{+∞}. The subdifferential ∂ψ(x) of
ψ at x ∈dom(ψ) is defined as

∂ψ(x)={x∗ ∈X∗ :ψ(x)−ψ(x)�<x∗, x−x > for allx ∈X} ,

where dom(ψ)={x ∈X :ψ(x)<+∞}.
Let B be a closed convex subset of X. The normal cone NB(x) of B at

x is denoted

NB(x)=
{
x∗ ∈X∗ : 0�<x∗, x−x > for allx ∈B} .

This cone can be also written as

NB(x)= ∂δB(x),

where δB is the indicator function of B (i.e., δB =0 if x∈B and δB =+∞ if
x /∈B). Properties of the subdifferential and the normal cone can be found
in Rockafellar [17].

As a direct consequence of Proposition 2.1, one has the following result.

PROPOSITION 2.2 [4]. Let Y be a Banach space and S⊂Y be a nonempty
closed convex cone with nonempty interior. Then for all y ∈Y,0 /∈ ∂�S(y).

The following result has been proved by Attouch and Brezis [2] in the
Banach space setting and by Rodrigues and Simons [18] in the case of the
Frechet space.

THEOREM 2.1 [2] . Assume that ψ1,ψ2 :X→ R ∪ {+∞} are convex, lower
semicontinuous and proper and that R

+(dom(ψ1) − dom(ψ2)) is a closed
vector subspace of X. Then

∂(ψ1 +ψ2)(x)= ∂ψ1(x)+ ∂ψ2(x).
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3. Optimality Conditions

In this section, we preserve the notations given in the previous section and
we give optimality conditions for (VP) in terms of Lagrange–Fritz–John
and Lagrange–Karush–Kuhn–Tucker multipliers. Before stating the theo-
rem which gives necessary optimality conditions for a local weak minimal
solution of (VP), we introduce the following lemma.

LEMMA 3.1 If x is a local weak minimal solution of (VP) with respect
to R

p
+, then for all (x∗

1 , . . . , x
∗
p) ∈ ∂g1(x)× . . .× ∂gp(x) and (w∗

1, . . . ,w
∗
m) ∈

∂k1(x)× . . .× ∂km(x), x solves the following unconstraint scalar optimization
problem

(SP )

{
Minimize max(�−IntRp

+(H1(x)),�−Q(l(x)),�−R
m+ (H2(x)))+δC∩E(x)

subject to x ∈X,

where H1(x) = f (x) − f (x) − (〈x∗
1 , x − x〉, . . . , 〈x∗

p, x − x〉),H2(x) = h(x) −
k(x)− (〈w∗

1, x−x〉, . . . , 〈w∗
m, x−x〉) and E is defined by relation (2).

Proof. Suppose the contrary. By convexity of the following function

x→max(�−IntRp
+(H1(x)),�−Q(l(x)),�−R

m+(H2(x)))+ δC∩E(x),

it follows that there exists a sequence (xn)n∈N ⊂X such that (xn)n∈N →x and

max(�−IntRp
+(H1(xn)),�−Q(l(xn)),�−R

m+(H2(xn)))+ δC∩E(xn)<0.

This implies with Proposition 2.1 and relation (2), that for all n∈N

xn∈C,Axn=b, H1(xn)∈−IntRp
+,

l(xn)∈−IntQ and H2(xn)∈−IntRm
+

that is , for all n,

xn∈C,Axn=b, l(xn)∈−IntQ,h(xn)−k(xn)∈−IntRm
+

and

f (xn)−g(xn)− (f (x)−g(x))∈−IntRp
+,

which contradicts the fact that x is a local weak minimal solution of (VP).

Now, we can give our first main result in this section.
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THEOREM 3.1. If x is a local weak minimal solution of (VP) then for all
(x∗

1 , . . . , x
∗
p)∈ ∂g1(x)× . . .× ∂gp(x) and (w∗

1, . . . ,w
∗
m)∈ ∂k1(x)× . . .× ∂km(x)

there exist (α1, . . . , αp)∈ R
p
+, (β1, . . . , βm)∈ R

m
+ and z∗ ∈ (−Q)o not all zero

such that 〈z∗, l(x)〉=0, βj (hj (x)−kj (x))=0, j =1, . . . ,m and

p∑

i=1

αix
∗
i +

p∑

i=1

βjw
∗
j ∈ ∂




p∑

i=1

αifi +
m∑

j=1

βjhj + z∗ol+ δC∩E



 (x). (4)

Proof. Put z := l(x) and w :=h(x)−k(x). By Lemma 3.1, we have

0∈ ∂(max(�−IntRp
+(H1(·)),�−Q(l(·)),�−R

m+(H2(·)))+ δC∩E)(x), (5)

where H1(x)=f (x)−f (x)− (〈x∗
1 , x−x〉, . . . , 〈x∗

p, x−x〉) and H2(x)=h(x)−
k(x)− (〈w∗

1, x− x〉, . . . , 〈w∗
m, x− x〉). Define the functions H :X→R

p×Z×
R
m and � : Rp×Z×R

m→R by

H(x)= (H1(x), l(x),H2(x)) (6)

and

�(y, z,w)=max(�−IntRp
+(y),�−Q(z),�−R

m+(w)). (7)

By (6) and (7), it follows that (5) can be written as

0∈ ∂(�oH + δC∩E)(x).

Consider now, the following functions:

f1 :X×R
p×Z×R

m→R∪{+∞}
(x, y, z,w) �→ δC∩E(x)+ δepi(H)(x, y, z,w), (8)

f2 :X×R
p×Z×R

m→R

(x, y, z,w) �→�(y, z,w), (9)

where epigraph epi(H ) of H is taken with respect to the cone R
p
+×Q×R

m
+.

In view of Lemma 2.1, the function � is (R
p
+×Q × R

m
+)-increasing on

R
p×Z×R

m. Hence for any x ∈X,
(�oH + δC∩E)(x)= inf

(y,z,w)∈Rp×Z×Rm
{f1(x, y, z,w)+f2(x, y, z,w)} .

It is easy to see that

0∈ ∂(�oH+δC∩E)(x) if and only if (0,0,0,0)∈ ∂(f1+f2)(x,0, z,w).

(10)
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By Proposition 2.1, f2 is convex and continuous. Since f1 is convex and
proper, it follows by the classical Moreau–Rockafellar subdifferential for-
mula (see [15, p. 62], [16 or 17])

(0,0,0,0)∈ ∂f1(x,0, z,w)+ ∂f2(x,0, z,w). (11)

Then there exist

(u∗
1,−α,−z∗,−β)∈ ∂f1(x,0, z,w) and (u∗

2, α1, z
∗
1, β1)∈ ∂f2(x,0, z,w) (12)

such that

(0,0,0,0)= (u∗
1,−α,−z∗,−β)+ (u∗

2, α1, z
∗
1, β1). (13)

We conclude from (7), (9) with (13) that (12) is equivalent to

(α, z∗, β)∈ ∂�(0, z,w) (14)

and

(0,−α,−z∗,−β)∈ ∂f1(x,0, z,w).

By Theorem 4.4.2, p. 267 of [10] and (14), we have

(α, z∗, β)∈ co(A),

where A := (∂�−IntRp
+(0) × {(0,0)}) ∪ ({0} × ∂�−Q(z) × {0}) ∪ ({(0,0)} ×

∂�−R
m+(w)) and co is the convex hull. Hence by Theorem 3.3, p. 18 of [17],

there exist u∗ ∈∂�−IntRp
+(0), v

∗ ∈∂�−Q(z), w∗ ∈∂�−R
m+(w) and (λ1, λ2, λ3)∈

R
3
+ such that

(α, z∗, β)=λ1(u
∗,0,0)+λ2(0, v∗,0)+λ3(0,0,w∗) and λ1 +λ2 +λ3 =1.

Proposition 2.2, shows that

(α, z∗, β) �= (0,0,0).

From definitions of ∂�−IntRp
+(0), ∂�−Q(z) and ∂�−R

m+(w), we immedi-
ately obtain α ∈ R

p
+, z∗ ∈ (−Q)o and β ∈ R

m
+. Put α := (α1, . . . , αp) and

β := (β1, . . . , βp). Since �−IntRp
+(0)= 0, it follows by Proposition 2.1 that

�(0, z,w)=0, hence by (14) we have

�(y, z,w)� 〈α, y〉+〈z∗, z− z〉+〈β,w−w〉 (15)
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for all (y, z,w)∈ Y ×Z×W . Since z := l(x)∈ −Q and z∗ ∈ (−Q)o we con-
clude from (15) with y=0, z=0 and w=w

〈z∗, l(x)〉=0.

As w :=h(x)−k(x))∈−R
m
+ and β∈R

m
+, it follows from (15) with y=0, z=z

and w=0

βj (hj (x)−kj (x))=0, j =1, . . . ,m.

Since (0,−α,−z∗,−β)∈ ∂f1(x,0, z,w), it follows from (8),

〈−α, y〉+〈−z∗, z− z〉+〈−β,w−w〉� δC∩E(x)+ δepi(H)(x, y, z,w) (16)

for any (x, y, z,w)∈X× R
p×Z× R

m. For each x ∈C ∩E, setting in (16),
y=H1(x), z= l(x) and w=H2(x) one has

p∑

i=1

αifi(x)+
m∑

j=1

βjhj (x)+〈z∗, l(x)〉

�
p∑

i=1

αifi(x)+
m∑

j=1

βjhj (x)+〈z∗, l(x)〉+
〈

p∑

i=1

αix
∗
i +

m∑

j=1

βjw
∗
j , x−x

〉

.

(17)

Hence
p∑

i=1

αix
∗
i +

m∑

j=1

βjw
∗
j ∈ ∂(

p∑

i=1

αifi +
m∑

j=1

βjhj + z∗ol+ δC∩E)(x).

This completes the proof of Theorem 3.1.

As a consequence of Theorem 3.1, we have the following result

COROLLARY 3.1. Assume that R+(C−E) is a closed vector subspace, that
the range of A is closed and that for i = 1, . . . , p; and j = 1, . . . ,m, the
functions fi , hj and l are continuous at some point x0 ∈ C ∩ E. If x is a
local weak minimal solution of (VP) then for all (x∗

1 , · · · , x∗
p)∈∂g1(x)×· · ·×

∂gp(x) and (w∗
1, . . . ,w

∗
m) ∈ ∂k1(x)× · · · × ∂km(x) there exist (α1, . . . , αp) ∈

R
p
+, (β1, . . . , βm) ∈ R

m
+ and z∗ ∈ (−Q)o not all zero such that 〈z∗, l(x)〉 = 0,

βj (hj (x)−kj (x))=0, j =1, . . . ,m and

p∑

i=1

αix
∗
i +

m∑

j=1

βjw
∗
j ∈

p∑

i=1

αi∂fi(x)+
m∑

j=1

βj∂hj (x)+ ∂(z∗ol)(x)+NC(x)

+rang(A∗), (18)

where A∗ is the transpose of A and rang (A∗) is the range of A∗.
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Proof. By Theorem 3.1, it suffices to show that (4) is equivalent to (18).
From the classical Moreau-Rockafellar formula (see [15, p. 62], [16] or [17])
and Theorem 2.1, we conclude that (4) is equivalent to

p∑

i=1
αix

∗
i +

m∑

j=1
βjw

∗
j ∈

p∑

i=1
αi∂fi(x)+

m∑

j=1
βj∂hj (x)+ ∂(z∗ol)(x)+NC(x)

+NE(x).
Since the range of A is closed then by Lemma 2.4 (i) of Jeyakumar and
Wolkowicz [11], we have NE(x)= rang(A∗). This completes the proof of
Corollary 3.1.

Corollary 3.1, with gi=0, i=1, . . . , p and kj =0, j=1, . . . ,m extends the
result by Kanniappan [12, Theorem 3.1] and some others publications (see
for instance [14]).

Let us turn to sufficient optimality conditions for (V P ). Before, let us
recall the following concept introduced in Hiriart-Urruty [9]. A function ψ:
X→ R is said to be a polyhedral (or piecewise affine) convex function if
ψ(x)= max

{〈a∗
i , x〉+di : i=1, . . . , q

}
for all x ∈X, where a∗

1 , . . . , a
∗
q are in

X∗ and d1, . . . , dq are real numbers. The proof of the following Proposition
3.1 uses some ideas of Hiriart-Urruty [9].

PROPOSITION 3.1. Let x ∈ F . Assume that gi and kj are polyhedrals,
i = 1, . . . , p and j = 1, . . . ,m. Moreover, assume that for all (x∗

1 , . . . , x
∗
p)∈

∂g1(x)× · · · × ∂gp(x) and (w∗
1, . . . ,w

∗
m) ∈ ∂k1(x)× · · · × ∂km(x) there exist

(α1, . . . , αp)∈ R
p
+� {(0, . . . ,0)}, (β1, . . . , βm)∈ R

m
+ and z∗ ∈ (−Q)o such that

〈z∗, l(x)〉=0, βj (hj (x)−kj (x))=0, j =1, . . . ,m and

p∑

i=1

αix
∗
i +

m∑

j=1

βjw
∗
j ∈ ∂




p∑

i=1

αifi +
m∑

j=1

βjhj + z∗ol+ δC∩E



 (x).

Then x is a local weak minimal solution of (VP).
Proof. For each i ∈{1, . . . , p} and j ∈{1, . . . ,m}, put

gi(x) :=max
{〈a∗

i,s , x〉+ai,s : s=1, . . . , q1
}

and

kj (x) :=max
{〈e∗j,s, x〉+ ej,s : s=1, . . . , q2

}

for all x ∈ X, where a∗
i,1, . . . , a

∗
i,q1

(respectively e∗j,1, . . . , e
∗
j,q2

) are in X∗

and ai,1, . . . , ai,q1 (respectively ej,1, . . . , ej,q2 ) are real numbers. For each i ∈
{1, . . . , p} and j ∈{1, . . . ,m}, we know:
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∂gi(x)= convex hull of
{
a∗
i,s : s ∈ I1(x)

}

and

∂kj (x)= convex hull of
{
e∗j,s : s ∈ I2(x)

}

for all x ∈ X, where I1(x) (respectively I2(x)) denotes the set of indi-
ces s ∈ {1, . . . , q1} (respectively s ∈ {1, . . . , q2}) for which gi(x)= 〈a∗

i,s , x〉 +
ai,s (respectively kj (x) = 〈e∗j,s, x〉 + ej,s). By the fact that gi and kj , i =
1, . . . , p, j = 1, . . . ,m are polyhedrals, it follows from J.-B. Hiriart-Urru-
ty [9] that for each i ∈{1, . . . , p} (respectively j ∈{1, . . . ,m}) there exists a
neighborhood 
i (respectively Vj ) of x such that

∂gi(x)⊂ ∂gi(x) for all x ∈
i
respectively ∂kj (x)⊂ ∂kj (x) for all x ∈Vj).

For all i ∈ {1, . . . , p} (respectively j ∈ {1, . . . ,m}) and x∗
i ∈ ∂gi(x) (respec-

tively w∗
j ∈ ∂kj (x)), by definition, we have

gi(x)�gi(x)+〈x∗
i , x−x〉 (19)

(respectively kj (x)�kj (x)+〈w∗
j , x−x〉). (20)

Set 
 := (∩pi=1
i)∩ (∩mj=1 Vj). By our assumption, we have

p∑

i=1

αifi(x)+
m∑

j=1

βjhj (x)+〈z∗, l(x)〉�
p∑

i=1

αifi(x)+
m∑

j=1

βjkj (x)

+
〈

p∑

i=1

αix
∗
i +

m∑

j=1

βiw
∗
i , x−x

〉

. (21)

for all x ∈
∩C∩E. Combining (19), (20) and (21) yields:

p∑

i=1

αi(fi(x)−gi(x)− (fi(x)−gi(x)))

+
m∑

i=1

βj (hj (x)−kj (x))+〈z∗, l(x)〉�0

for all x ∈
∩C∩E. In particular, with relation (1), it follows

p∑

i=1

αi(fi(x)−gi(x)− (fi(x)−gi(x)))�0
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for all x ∈
∩C ∩E ∩D. By the fact that (α1, . . . , αp)∈ R
p
+ \ {(0, . . . ,0)},

it follows that x is a local weak minimal solution of (VP). The proof of
Proposition 3.1 is completed.

We will need the following Proposition 3.2 which will be used in Corol-
lary 3.2.

PROPOSITION 3.2. Let x ∈ F . Assume that there exists x0 ∈X such that
x0 ∈C,Ax0 = b, l(x0) ∈ −IntQ and hj (x0)− kj (x0)� 0, j = 1, . . . ,m. If for
each (x∗

1 , . . . , x
∗
p) ∈ ∂g1(x)× · · · × ∂gp(x) and (w∗

1, . . . ,w
∗
m) ∈ ∂k1(x)× · · · ×

∂km(x) there exist (α1, . . . , αp) ∈ R
p
+, (β1, . . . , βm) ∈ R

m
+ and z∗ ∈ (−Q)o not

all zero such that 〈z∗, l(x)〉=0, βj (hj (x)−kj (x))=0, j =1, . . . ,m and

p∑

i=1

αix
∗
i +

p∑

j=1

βjw
∗
j ∈ ∂




p∑

i=1

αifi +
m∑

j=1

βjhj + z∗ol+ δC∩E



 (x).

Then (α1, . . . , αp, β1, . . . , βm) �= (0, . . . ,0,0, . . . , 0).
Proof. Suppose that (α1, . . . , αp, β1, . . . , βm)= (0, . . . ,0,0, . . . ,0). Hence

for all x ∈C∩E
〈z∗, l(x)〉�0. (22)

Since l(x0)∈−IntQ then there exists a neighborhood V of zero in Z such
that

l(x0)+V ⊂−Q.
This implies by relation (22)

〈z∗, z〉�0 for all z∈V.
Hence z∗ =0, which contradicts the fact that (α1, . . . , αp, β1, . . . , βm, z

∗) �=
(0, . . . ,0,0, . . . ,0,0). This implies that (α1, . . . , αp, β1, . . . , βm) �= (0, . . . ,0,
0, . . . ,0). The proof is completed.

In the following, we derive necessary optimality conditions for (VP) in
terms of Lagrange-Karush-Kuhn-Tucker multipliers whenever, the set of
constraints is convex. More precisely, we consider the following vector
mathematical programming:

(VPI)






R
p
+− Minimize f (x)−g(x),

subject to the constraints
x ∈C, l(x)∈−Q and Ax=b,

where f, g,C, l,A and Q are as in (VP).
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COROLLARY 3.2. Assume that, there exists x0 ∈ X such that x0 ∈ C ∩
{x ∈X:Ax0 =b, l(x)∈−IntQ} (this condition is often said to be the general-
ized Slater′s condition see Jeyakumar and Wolkowicz [11]). If x is a local
weak minimal solution of (VPI) then for each (x∗

1 , . . . , x
∗
p) ∈ ∂g1(x)× · · · ×

∂gp(x) there exist α∈R
p
+ \{0} with α= (α1, . . . , αp) and z∗ ∈ (−Q)o such that

〈z∗, l(x)〉=0 and

p∑

i=1

αix
∗
i ∈ ∂

(
p∑

i=1

αifi + z∗ol+ δC∩E

)

(x).

Proof. The proof follows from Theorem 3.1 and Proposition 3.2.

Let us turn to necessary and sufficient optimality conditions for (VPI) in
terms of Lagrange-Karush-Kuhn-Tucker multipliers.

COROLLARY 3.3. Let x ∈ C with l(x) ∈ −Q and Ax = b. Assume that
gi, i=1, . . . , p are polyhedrals and that, there exists x0 ∈X such that

x0 ∈C∩{x ∈X:h(x)∈−IntQ and Ax0 =b} .

Then x is a local weak minimal solution of (VPI) if and only if for
each (x∗

1 , . . . , x
∗
2 ) ∈ ∂g1(x) × · · · × ∂gp(x) there exist α ∈ R

p
+\{0} with α =

(α1, . . . , αp) and z∗ ∈ (−Q)o such that 〈z∗, l(x)〉=0 and

p∑

i=1

αix
∗
i ∈ ∂

(
p∑

i=1

αifi + z∗ol+ δC∩E

)

(x).

Proof. The proof follows from Corollary 3.2 and Proposition 3.1.

Corollary 3.3, with gi = 0, i = 1, . . . , p and with the assumptions as in
Corollary 3.1, extends the result by Minami [14, Theorem 5.1].

In the following Corollary 3.4, we derive from Theorem 3.1, necessary
optimality conditions for convex vector maximization problems. Consider
the following convex vector maximization problem

(VPII)
{

R
P
+− Maximize g(x)= (g1(x), . . . , gp(x))

subject to x ∈C.

Remark 3.1. It is easy to see that x is a local weak maximal solution of
(VPII) if and only if x is a local weak minimal solution of the problem
(VPII′) defined by
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(VPII′)
{

R
P
+− Minimize −g(x)= (−g1(x), . . . ,−gp(x))

subject to x ∈C.

As a consequence of Theorem 3.1 we have the following result.

COROLLARY 3.4. If x is a local weak maximal solution of (VPII), then
for all (x∗

1 , . . . , x
∗
p)∈ ∂g1(x)× · · · × ∂gp(x) there exists α ∈ R

p
+\{0} with α=

(α1, . . . , αp) such that

p∑

i=1

αix
∗
i ⊂NC(x).

Proof. The proof follows from Remark 3.1 and Theorem 3.1.

Corollary 3.4, extends the result obtained in scalar optimization by Hiri-
art-Urruty [9, Proposition 3.8] to the vector case.

4. Application to Vector Fractional Mathematical Programming

In this section, we give an application. Let fi:X→R+, gi :X→R+ \{0} ; be
given functionals which are convex, i= 1, . . . , p. Under these assumptions
we investigate the vector optimization problem

(V FP )






R
p
+− Minimize

(
f1(x)

g1(x)
,
f2(x)

g2(x)
, . . . ,

fp(x)

gp(x)

)

subject to the constraints
x ∈C,Ax=b, l(x)∈−Q and
hj (x)−kj (x)�0 for j =1, . . . ,m,

where C,A, l, hj and kj are as in problem (VP).
We will need the following lemma.

LEMMA 4.1. x is a local weak minimal solution of (VFP) if and only if x
is a local weak minimal solution of the following problem

(V FP ′)






R
p
+− Minimize (f1(x)− r1g1(x), f2(x)− r2g2(x), . . . ,

fp(x)− rpgp(x)
)

subject to the constraints
x ∈C, Ax=b, l(x)∈−Q and
hj (x)−kj (x)�0 for j =1, . . . ,m,

where ri =fi(x)/gi(x), i=1,2, . . . , p.
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Proof. The only if part. Suppose the contrary. There exists (xn)n∈N ⊂X

and an integer n0 such that (xn)n∈N →x and for all n�n0

hj (xn)−kj (xn)�0, j =1,2, . . . ,m; Axn=b, l(xn)∈−Q,

and

(fi(xn)− rigi(xn)− (fi(x)− rigi(x))<0, i=1,2 , . . . , p.

Due to the fact that for i=1,2 , . . . , p, gi(xn)>0, it follows

fi(xn)

gi(xn)
− fi(x)

gi(x)
<0, i=1,2 , . . . , p,

which contradicts the fact that x is a local weak minimal solution of
(VFP). So x is a local weak minimal solution of (VFP′).

The converse implication can be proved in the similar way. The proof is
completed.

THEOREM 4.1. Assume that l, fi andhj for i=1, . . . , p and j =1, . . . ,m
are continuous at some point x0 of C ∩ E, that R+(C − E) is a closed
vector subspace and that the range of A is closed. If x is a local weak
minimal solution of (VFP) then for each (x∗

1 , . . . , x
∗
p) ∈ ∂g1(x) × · · · ×

∂gp(x) and (w
∗
1, . . . ,w

∗
m)∈∂k1(x)×· · ·×∂km(x) there exist (α1, . . . , αp)∈R

p
+,

(β1, . . . , βm)∈R
m
+andz

∗ ∈(−Q)o not all zero and w∗ ∈W ∗ such that 〈z∗, l(x)〉=
0, βj (hj (x)−kj (x))=0, j =1, . . . ,m and

p∑

i=1

αirix
∗
i +

m∑

j=1

βjw
∗
j ∈

p∑

i=1

αi∂fi(x)

+
m∑

j=1

βj∂hj (x)+ ∂(z∗ol)(x)+A∗w∗ +NC(x),

where ri =fi(x)/gi(x), i=1,2, . . . , p.
Proof. The proof follows from Lemma 4.1 and Corollary 3.1.
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